Organization and dynamics of yeast mitochondrial nucleoids

نویسنده

  • Isamu MIYAKAWA
چکیده

Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition and dynamics of human mitochondrial nucleoids.

The organization of multiple mitochondrial DNA (mtDNA) molecules in discrete protein-DNA complexes called nucleoids is well studied in Saccharomyces cerevisiae. Similar structures have recently been observed in human cells by the colocalization of a Twinkle-GFP fusion protein with mtDNA. However, nucleoids in mammalian cells are poorly characterized and are often thought of as relatively simple...

متن کامل

Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae.

Mitochondrial nucleoids (mt-nucleoids) of the yeast, Saccharomyces cerevisiae, were isolated from spheroplasts of stationary phase cells and their structure and organization were investigated by fluorescence microscopy, electron microscopy, and biochemical techniques. Isolated mt-nucleoids were spherical or ovoid and 0.3-0.6 micron in diameter, and were about the same size and shape as those ob...

متن کامل

The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein.

Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids ...

متن کامل

Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes.

Recent progress in the analysis of protein components of the mitochondrial nucleoid and replisome of baker's yeast, Saccharomyces cerevisiae, opens a unique opportunity for understanding the molecular principles of mitochondrial inheritance. In this work we identified homologs of proteins involved in the mitochondrial DNA packaging and replication in the complete genome sequence of the petite-n...

متن کامل

Organization and dynamics of human mitochondrial DNA.

Heteroplasmic mutations of mitochondrial DNA (mtDNA) are an important source of human diseases. The mechanisms governing transmission, segregation and complementation of heteroplasmic mtDNA-mutations are unknown but depend on the nature and dynamics of the mitochondrial compartment as well as on the intramitochondrial organization and mobility of mtDNA. We show that mtDNA of human primary and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017